In 1911 the Society of Automotive Engineers (SAE) created a numerical code graduated system - the SAE J300 Engine Oil Viscosity Classification - to classify motor oil according to their viscosity characteristics.
The SAE wanted a system that reflected the suitability of an oil for use as an engine lubricant and was easy for the consumer to understand. Before the SAE came up with the SAE J300 system, there was no simple way to tell how motor oil would behave in a hot engine.
Initially, the first version of the SAE J300 EOVC system defined five different numbered grades for motor oil (SAE 10, 20, 30, 40, and 50) based on flow rates (viscosities) measured at 100°C. By 1926 there were six grades of oil defined (SAE 10 through SAE 60).
Over the years, as shortcomings were identified, the SAE J300 system was amended numerous times. For instance, four SAE "W" (Winter) grades (SAE 10W, 15W, 20W, and 25W) were added in 1952, which were specified by viscosity measured at -18°C (0°F), as it became apparent that engines could not be started in very cold weather. Two more "W" grades (0W and 5W) would later be added.
In the early 1970's, minimum High-Temperature/High-Shear (HT/HS) specifications (measured at 150°C) were added when it became obvious that engines suffered from excessive wear or even seized when operating at high temperatures under high load (e.g. high speeds, towing).
By this time, the SAE J300 Engine Oil Viscosity Classification system comprised eleven distinct motor oil viscosity classifications, six low-temperature grades (SAE 0W, 5W, 10W, 15W, 20W, and 25W) and five high-temperature grades (SAE 20, 30, 40, 50, and 60); the lower the number, the lower the temperature at which the oil could be used for safe and effective protection. The higher numbers reflected better protection for high heat and high load situations.
In the 1980's, there were several outbreaks of catastrophic engine failures in both the U.S. and Europe due to unusually cold weather. Some engine oils thickened and gelled in these conditions. Engines would start but their pumping systems were incapable of pulling the cold oil out of the oil pans. The result was a rash of engine failures, warranty claims, and motor oil recalls. To address this problem the J300 cold weather specification was modified to require cold temperature cranking and pumping tests.
On April 2, 2013, another revision to the SAE J300 Engine Oil Viscosity Classification was published adding a new high-temperature viscosity grade (SAE 16) to the previous SAE J300 system. The J300 revision was requested by a consortium of passenger car OEMs to provide a viscosity grade lower than SAE 20 in order to meet increasingly stringent fuel economy requirements.
The new grade will be specified in the future by OEMs for cars specifically designed to use new low-viscosity oils. It is not deemed to be suitable for use with older engines or newer vehicles not designed for such low-viscosity oils. Increasingly lower oil viscosity grades could be defined in the future.
Besides adding the SAE 16 grade, the new revision also revised the minimum viscosity limit of SAE 20. In the past, an SAE 20 oil grade’s viscosity range, measured at 100°C, was from 5.6 cSt to 9.3 cSt, which was a much broader range than that of SAE 30, 40, 50, or 60 grades. Additionally, the lower part of the old SAE 20 range was not being utilized. Therefore, the minimum kinematic viscosity was increased from 5.6 cSt to 6.9 cSt to bring the range of SAE 20 in line with that of the higher-viscosity grades.